Year 8
 KnowLedge ORGANISERS

Bishop walsh

Spring Term 1 ALGEBRAIC TECHNIQUES

Unit 6: Brackets, Equations \& Inequalities
Unit 7: Indices \& Standard Form

ALGEBRAIC TECHNIQUES...

Unit 6: Brackets, Equations \& lrequalities

What tol need to be oble to do?

By the end of this unit you should be able to:

- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

Keywords

Expression: A collection of numbers \& letters with no = sign Equation: Two expressions are equal to each other, using $=$.
Formula: An equation giving instructions how to calculate a value.
Identity: Two expressions are ALWAYS equal to each other.
Product: Multiply
Highest Common Factor (HCF): the biggest factor of both numbers
Factorise: Put into brackets
Inequality: Like an equation but with $\mathrm{a}<, \leq,>$ or \geq sign. It shows if one expression is greater than, less than or equal to another.

Form expressions
More than - ADD

$$
\begin{aligned}
\text { e.g. } 4 \text { more than } \mathrm{t} \longrightarrow \mathrm{t}+4 \\
8 \text { less than } \mathrm{k}
\end{aligned} \mathrm{k}-8
$$

Only like terms can be grouped together
\square e.g. Find the perimeter of this shape (the distance around the outside of the shape)
$2 t+1$

$$
=6 t+2
$$

For unknown variables, a letter is normally used in its place

Expand single breackets

$6 x+12$

$6 x+12$

$2 x+4$		$2 x+4$		$2 x+4$		
x	x	4	x	x	4	x
$6 x+12$				x	4	
$6 x$						

Different representations of $3(2 x+4)=6 x+12$

$$
8 x+4 \equiv 4(2 x+1)
$$

I Note: $8 \mathrm{x}+4 \equiv 2(4 \mathrm{x}+2)$

Algebraic Techniques... Unit 7:Indices \& Standard Form

What do I reed to be able to do?

By the end of this unit you should be able to:

- Add/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices
| - Know the addition law for indices
I - Know the subtraction law for indices

Keywords

Integer: Whole number
Base: The number that gets raised to a power
Index: Power (The plural of index is indices)
Coefficient: The number used to multiply by a variable
Product: Multiply
Standard Form: A number written in the form $\mathrm{A} \times 10^{n}$ where A is between 1 and 10 and n is an integer.

¡Coefficient

C
1
1
1
1

Standard Form

$\xrightarrow[\text { Any number }]{\longrightarrow} \mathrm{A}$ x 10 $\mathrm{n}^{\text {Any }}$

less than 10

Examples

7×10^{3}	$=7 \times 10 \times 10 \times 10$	$=7000$
3.2×10^{4}	$=3.2 \times 10 \times 10 \times 10 \times 10$	$=32000$
6×10^{-3}	$=6 \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}$	$=0.006$
$5.4 \times 10^{-2}=5.4 \times \frac{1}{10} \times \frac{1}{10}$	$=0.054$	

The power tells you how many times to multiply (for positive powers) or divide (for negative powers) by 10 .

A negative power does not mean a negative answer - it means a number closer to 0 .

Each square represents x^{2} and each cube represents x^{4}
Expression

Only similar terms (like terms) can be simplified If they have different powers, they are unlike terms

Multiply expmessions with indices

4 bx 3 a
$\equiv 4 \times \mathrm{bx} \times \mathrm{xa}$
$\equiv 4 \times 3 \times b \times a$
$\equiv 12 \mathrm{ab}$
$5 t^{2} \times 9 t$
三5xtxtx9xt
三5x9xtxtxt
$\equiv 45 \mathrm{t}^{3}$

Addition law for indices

$$
x^{a} \times x^{b}=x^{a+b}
$$

If the base number or letter is the same you can ADD the powers

$$
\begin{array}{ll}
\begin{array}{l}
3^{5} \times 3^{2} \\
\mathbf{a}^{7} \times \mathrm{a}^{3}
\end{array} \quad \longrightarrow 3 \times 10^{-13^{7}} \\
\mathbf{a}^{10}
\end{array}
$$

$$
5 \mathrm{a}^{3} \mathrm{~b}^{2} \times 3 \mathrm{a} \mathrm{~b}^{4} \longrightarrow 15 \mathrm{a}^{4} \mathrm{~b}^{6} \text { Multiply the numbers, }
$$

Divide expressions with indices
$\frac{24}{36} \longrightarrow \frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 2 \times 3} \longrightarrow \frac{2}{3}$
Cancel the factors
$\frac{5 a^{3} \mathrm{~b}^{2}}{15 \mathrm{ab}^{5}} \rightarrow \frac{5 \times a \times a \times a \times b \times b}{3 \times 5 \times a \times b \times b \times b \times b \times b} \rightarrow \frac{\mathrm{a}^{2}}{3 \mathrm{~b}^{3}}$
Subtraction law for indices

$$
x^{a} \div x^{b}=x^{a-b}
$$

3
$3^{5} \div 3^{2}$
$a^{7} \div \mathrm{a}^{3}$

$50 \mathrm{a}^{7} \mathrm{~b}^{5}$
$10 \mathrm{a}^{2} \mathrm{~b}^{3}$
:---
subtract the powers

Order numbers in stardard form

6.4×10^{-2}
2.4×10^{2}
3.3×10^{0}
1.3×10^{-1}
0.064
240
3.3
0.13

Look at the power first will the number be $=>$ or $<$ than 1
Use a place value grid to compare the numbers for ordering

