YEAR 8 (ism

 KnOWLEDGE

 KnOWLEDGE ORGANISERS

4*

Bishop walsh

AUTUMN TERM 1 RATIO \& PROPORTION

Unit 1: Ratio \& Scale Unit 2: Multiplicative Change Unit 3: Ratio \& Proportion Problems

RATIO \& PROPORTION...
 Unit 1: Ratio and Scale

What do I reed to be able to do?

By the end of this unit you should

 be able to:- Simplify any given ratio

। - Share an amount in a given ratio
I Solve ratio problems given a part Solutions should be modelled, explained and solved.

Tegwords

Ratio: a statement of how two numbers compare
Part: a section of a whole
Equivalent: of equal value
Factors: integers that multiply together to get the original value Scale: the ratio between the small version and its actual size.
Circumference: The perimeter of a circle
Radius: The distance from the centre to the outside of a circle
Diameter: The distance right across a circle, through the centre

Representing a ratio

"For every 5 boys there are $\mathbf{3}$ girls"
This is the "whole" - boys and girls together

This represents the 5 boys

This represents the 3 girls

This represents the 5 boys

This represents the 3 girls

Order is innootetant

"For every dog there are 2 cats"

The ratio has to be written in the same order as the information is given. e.g. 2:1 would represent 2 dogs for every 1 cat. X

"For every 6 days of rain there are 4 days of sun"

IUnits are important:

When using a ratio - all parts should be in the

Sharing a whole into a given ratio

Find the value of one part (one box)
| Whole: £350
7 parts to share between
(3 James, 4 Lucy)
\square = one part $=£ 50$

Put back into the question

James: Lucy	James $=3 \times £ 50=£ 150$
$\left(\begin{array}{ll} 3: 4 \\ x 50 & x 50 \\ £ £ 150: £ 200 \end{array}\right)$	$\mathcal{L} £ 50$

Inside a box are blue and red pens in the ratio 5:1. If there are 10 red pens how many blue pens are there?
II
II
II
II
II
II

"For every 3 days of rain there are 2 days of sun" - when this happens twice the ratio becomes 6:4.

"whis is the boys and girls together

RATIO \& PROPORTION...

Unit 2: Multiplicative Change

What do / reed to be able to do?

By the end of this unit you should be able to:

- Solve problems and explain direct proportion
- Use conversion graphs to make statements, comparisons and form conclusions.
- Understand and use scale factors for length

Keywords

Il Variable: a part or letter where the value can be changed
Axes: horizontal and vertical lines that a graph is plotted around
Approximation: an estimate for a value
Similar Shapes: Shapes that are in the same ratio - one is an
enlargement of the other.
Scale Factor: the multiple that increases the size of a shape
Currency: the system of money used in a particular country
|। Conversion: the process of changing one variable to another
I) Scale: the ratio between the small version and its actual size.

As one variable changes the
other changes at the same rate. This is a multiplicative change

4 cans of pop $=£ 2.40$

$$
\times 0.5\binom{4 \text { cans of pop }=£ 2.40}{2 \text { cans of pop }=£ 1.20}
$$

This multiplier is the same In the same way that this would be for ratio

Draw and interpret scale diagrams il

For every 1 cm on my map is 25000 cm in real life.

RATIO \& PROPORTION...
 Unit 3: Soluing Ratio \& Proportion Problems

What do / reed to be able to do?

By the end of this unit you should be able to:

- Understand and solve problems with variables in direct proportion.
- Recognise direct proportion graphs and use conversion graphs.
- Understand and solve problems with variables in inverse proportion.
- Recognise inverse proportion graphs.
- Solve ratio problems
- Solve Best Buy problems

Keywords

Variable: a part or letter where the value can be changed। Direct Proportion: When two variables are connected sol that if you double one variable, then you also double the other.
Inverse Proportion: When two variables are connected so that if you double one variable, then you halve the other.
Conversion: the process of changing one variable to another
Origin: the point $(0,0)$ on a graph

