YeAR 7

KnowLedge ORGANISERS

4
 Bishop walsh

Autumn Term 1
 APPLICATIONS OF NUMBER

Unit 1: Developing Number Sense
Unit 2: Addition \& Subtraction
Unit 3: Multiplication \& Division

APPLICATI Unit 2:

What do / need to be able to do?

I By the end of this unit you should be I able to:
| - Understand properties of addition/ subtraction

- Use mental strategies for addition/subtraction
| - Use formal methods of addition/Subtraction for integers \& decimals
- Solve problems in context of perimeter
- Solve problems with finance, tables and timetables
Solve problems with frequency trees
- Solve problems with bar charts and line charts

Lemwords

Commutative: changing the order of the operations does not change the result Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)
Placeholder: a number that occupies a position to give value
Perimeter: the distance/ length around a 2D object
Polygon: a 2D shape made with straight lines
Balance: in financial questions - the amount of money in a bank account
Credit: money that goes into a bank account
Debit: money that leaves a bank account

Subtraction the order has to stay the same
Formal written methods

- Bar models

Number lines Part/ Whole diagrams

The order of addition does not change the result
$360-147=360-100-40-7$
Number lines help for addition and subtraction Working in 10 's first aids mental addition/

- Show spobrnaddutiounships by writing fact families

Remember the place value of each column.
You may need to move 10 ones to thp Onescolumntobeable to sulutractـ」

APPLICATIONS OF NUMBER...

 Unit 3.Maltipheratater and Diusisèn
What do / need to be able to do?

By the end of this unit you should be able to:

- Understand and use factors
- Understand and use multiples
- Multiply/ Divide integers and decimals by powers of 10
- Use formal methods to multiply
- Use formal methods to divide
- Understand and use order of operations
- Solve area problems

Keywords

I] Array: an arrangement of items to represent concepts in rows or columns
|| Multiples: found by multiplying any number by positive integers
I| Factor: integers that multiply together to get another number.
II Mili: prefix meaning one thousandth
Centi: prefix meaning one hundredth.
Kilo: prefix meaning multiply by 1000
Quotient: the result of a division
Dividend: the number being divided
II Divisor: the number we divide by.

Factors

The number itself
is always a factor

Bar models can represent by something is a multiple. E.g. 20 is a multiple of 4
|Lowest Common Multiples

Square numbers have an ODD	Be strategic
$\underline{\text { number of factors }}$	- Lay factors out in
$\frac{\text { Factors of } 4}{1,2,4} \quad 1,2, \frac{\text { Factors of } 36}{3,4,6,9,12,18,36}$	pairs can help you
not to miss any	

Metric conversions

$\frac{\text { ion }}{\text { (column) }}$
method

Repeated addition

Estimations: Using estimations allows a 'check' if your answer is reasonable

Less effective method especially for bigger multiplication Multiplication with decimals Perform multiplications as integers
e.g. $0.2 \times 0.3 \longrightarrow 2 \times 3$

Make adjustments to your answer to match the question: I $0.2 \times 10=2 \quad 0.3 \times 10=3$ Therefore $6 \div 100=\underline{0.6}$
$3584 \div 7=512$ Division with decimals

Short division

$$
\begin{array}{r}
512 \\
\hline 3^{3} 58^{1} 4
\end{array}
$$

Repeated multiplication and division by powers of 10 is commutative

If you have multiple operations from
the same tier work from left to right
e.g. $10-3+5=$

Area problems

Rectangle
Base x
Perpendicular height

Parallelogram/ Rhombus
Base x Perpendicular height

Triangle

$1 / 2 \times$ Base x
Perpendicular height A triangle is half the siz of the rectangle it would fit in

Mean -
a measure of average
It gives an idea of the central value
Lilly, Annie and Ezra have the
following cubes

Finding the mean amount is the average amount each person would have if shared out equally
Lilly Annie Ezra

The mean number of blocks would be 8 each

